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LETTER TO THE EDITOR 

Diffusive instability near Hopf bifurcation for exponentially 
autocatalyzed reaction-diffusion system 

S R Inamdar, P Rajani and B D Kulkarni? 
National Chemical Laboratory, Pune-411008, India 

Received 18 July 1990, in final form 1 October 1990 

Abstract. The analysis of an exponentially autocatalyzed reaction-diffusion system near 
the Hopf bifurcation point has been carried out using a reductive perturbation approach 
to obtain a description in terms of the Ginzburg-Landau equation. The conditions for the 
occurrence of instability, in the presence and absence of diffusion, leading to Hopf 
bifurcation are also derived. The nature of the governing equations leads to multi-valued 
instability conditions and eventually results in more than one region in parameter space 
where instability of uniform oscillations due to diffusion is possible. 

In this letter we shall consider an alternative form of autocatalysis where the product 
affects its own rate of formation through interactions with the rate constant in contrast 
to the normal autocatalysis where the rate is affected directly by the concentration of 
the product. The exponential autocatalysis has received acceptance as a general model 
for class of reaction-diffusion systems (Bar-Eli 1984a, b, c and 1985). The reaction 
scheme has been extensively analysed (i)  to identify the regions of multiplicity and 
oscillations (Ravi Kumar et a1 1984), (ii) to establish bounds on the steady-state 
solutions (Inamdar and Kulkarni 1990a), and (iii) for the occurrence of dissipative 
structures (Inamdar and Kulkarni 1990b, c). In this letter we shall reduce the reaction- 
diffusion equations to the form of a Ginzburg-Landau equation and thus open the 
reaction scheme to analysis in terms of features such as pattern formation, occurrence 
of chemical turbulence, existence of rotating and spiral waves and description in terms 
of nonlinear phase diffusion equations. The transcendental nature of the governing 
equations give rise to some new features such as the multiplicity of critical wavenumbers 
and more than one way of satisfying the different types of instability criteria that are 
not found in the conventional analysis of model systems. 

This letter begins by presenting the results of linear stability analysis where the 
conditions for the occurrence of different types of instabilities leading to Hopf bifurca- 
tion are identified. The reaction-diffusion equations are then reduced to a generalized 
Ginzburg-Landau equation form using the reductive perturbation technique (Taniuti 
et a1 1968, Taniuti 1974, Newel1 and Whitehead 1969, Kuramoto 1983). The results of 
reductive perturbation are then analysed and discussed. 

t To whom all correspondence should be addressed. NCL Communication No: 4857. 
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The reaction-diffusion equations of the exponentially autocatalyzed scheme are 
given as: 

ax a2x 
-= D, - + x o - x - D a , x  exp(ay) 
a t  ar2 

-- a2Y ay - D2 7 +yo - y + Da,x e x ~ (  ay)  - Da2y. 
a t  ar  

The homogeneous solutions of the system in ( la )  and ( lb)  come out as 

where x , ,  8 are the steady state values of x and y respectively. 
Defining the deviations as x = U + x , ,  and y = U + 8, the system of (1 a )  and (1 b) 

along with (2), (3) reduces to the following equations after linearization of the nonlinear 
term exp(au) = (1 + au): 

a u  a2u  
-= D , y - ( l + D a ,  e"')u-(aDa,x,e"')u-aDa, e"'w 
a t  ar 

a v  a2u 
- = D2 T +  Da, e"', + (aDa,xs e"' - (1 + Da2)u + aDa, eueuu. 
a t  ar  (4b) 

Assuming that the deviations U and U follow the relation 

U, u Cc exp( i@ + A t ) .  

Equation (4a)  and (46) can be rewritten in terms of a linear matrix differential operator 
as 

"(U) =( - D1 q2 - ( 1 + Da I e"' ) 
a t  U Da, ea' -D,q2+ ax,Da, eae - (1 + Da2) 

-aDaIxs e"' 

The characteristic polynomial can then be expressed as 

A 2 + K ( q ) h  +p(q)=o (7) 
where 

K ( q )  = q2(D,  + 0 2 )  + (Da2+2) + Dal ea'( 1 -axs )  

p(q)=  D,D2q4-q2{D,[ax,Da, e"'-(1+Da2)]-D2(1+Da, e"')}+(l+Da2) 

- ax,Dul eUe + (1 + Da2)Da, e"'. (86) 
The condition that K ( q )  and p(q) are non-negative for all q assures the stability of 
the steady state ( x s ,  e).  This stability condition can be violated in two different ways. 

(i)  Both K ( q )  and p(q)  remain positive for all q, except some where K ( q )  = 0. This 
is referred to as type I instability and implies that, 

K ( q ) = O  with q = o .  (9) 
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This results in an equation for the critical value of the bifurcating parameter yo, as 

The logarithmic term in (10) is subject to the constraint 

1 
x ,> - .  

a 

(ii) It is also possible that both K ( q )  and p ( q )  remain positive for all q except 
where p(q)  vanishes. This is referred to as type I1 instability can be expressed as 

and gives the following expressions for critical wavenumber qc and y & .  
The critical wavenumber qc is 

D,[ax,Da, eUe-(1+Da2)]-D2(1+Da,  cue) 
201 D, q c  = 

({D,[ax,Da, e"'-(l +Da2)] -D2(1+Da,  e"'))' 
1 

f- 
20102 

-4DlD2[(1 +Da2) ( l+  Da, e"e)-ax,Da, 

and the critical value yh, is 

where z is 

z = Da, eae 

- b' f Jb i2  - 4a'c' 

2 a' 
- - 

and the various constants are 

D ,  D 

D2 Dl 
C' = - ( 1 + D u ~ ) *  +> - 2( 1 + D 4 .  

We have thus obtained the conditions ((10) and (14)) for the occurrence of type 
I and type I1 instability. Equations (10) and (14) are plotted in figure 1 where parametric 
maps of xo against yo are presented for a defined set of other parameters. The cases 
for D1 = D, and D,  > D2 are shown separately. It is interesting to note that the 
transcendental nature of the governing equations gives rise to a set of two values for 
the critical concentration yo,. Clearly the requirement that K ( q )  be positive for all q 
for the stability of the system requires that yo > yoc. The region below the line yo, 
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Figure 1. Instability criteria in the presence and absence of diffusion. 

therefore shows type I instability. The choice of curve is decided by the steady state 
x, and 6 to which the system evolves, which in turn depends on the initial conditions 
specified. Of more interest, perhaps, is the condition (14) which shows a set of four 
possible values for the critical concentration ybc in a certain region. We can see in 
figure 1 that the two critical curves cut and cross each other at several places. In order 
that diffusion plays an important role we impose the condition yo, < y &  so that type 
I1 instability does not occur earlier than type I instability. The multi-valued nature of 
these criteria gives rise to interesting possibilities for satisfying this condition in many 
different ways. 

Following the general procedure outlined in Kuramoto (1983), we shall now reduce 
the reaction-diffusion equation using reductive perturbation technique following the 
specific form of the Ginzburg-Landau equation. 

(17)  
a W  
-= (1 +ice) W +  (1 +ic,)v: w - (1 +ic2)I wI2 w 
d t  

where 
A’) + A ( ~ x ,  + 1) + 1 
B( 1 - ax , )  

CO = 

B ( y 2 -  1) 
“ = A ( y 2 + 1 )  

and the other quantities are defined as 

A =  B =  
- ( a x , +  Da2+ 1) 

ax,(  Da2 + 2 )  
a x ,  - (1 + D u , ) ~  
woax,( Da2 + 2) 
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n, = ( a x ,  - 1 )[( 1 + ~ a ~ ) ’  - a x , ]  ( 2 0 a )  

R 2 = ( Q 1  - 4 w i ) [ 2 A ( a x , -  1 ) - 2 A 2 ( a x , - 1 ) 2 ( 1  + D a 2 ) ]  

+ R I { A [  ( a x ,  - 1 ) - A( a x ,  - 1 ) 2 (  1 + Da2) - 2 BwO] 

- B ( 2 w o + B ( a x , -  1 ) 2 ( 1  + D a 2 ) - 2 A o o ] }  

~ , = ( R , - 4 w ~ ) [ - 2 A B ( l - ( r ~ , ) ~ ( l + D a ~ ) ]  

+ f i , ( B [ ( a ~ , -  1 )  - A ( ~ x , -  1 ) 2 (  1 + D u ~ )  - 2B00] 

+ A [ 2 w 0 +  B( ax,  - 1 ) 2 (  1 + Da2) - 2 A w o ] } .  ( 2 0 c )  

The constants co, c, and c 2 ,  as obtained above, define the Ginzburg-Landau equation 
for the exponentially autocatalyzed reaction-diffusion system. Evaluation of these 
constants and therefore of the Ginzburg-Landau equation is central to subsequent 
development such as obtaining the plane waves, rotating waves, turbulence and entrain- 
ment phenomena in discrete oscillators. The quantity p(  = 1 + cIc2), defined in terms 
of the constants appearing in the Ginzburg-Landau equation, is an important parameter 
of the uniform oscillation stability, such that if p > 0 implies stability and vice versa. 
However, the stability of uniform limit cycle oscillation is not guaranteed for an 
infinitely large system size. 

In order to ensure that type I1 instability does not occur earlier than type I 
instability as the value of yo increases, we impose the condition yoc<y&,  in terms 
of y [  = ( D , / D , ) ” ~ ]  as 

F ( y ) = ( A y 4 ) + ( B y 2 ) + C  = O  ( 2 1 )  

where 

( a x ,  - Da2 - 1 ) (  Da2 + 2 )  ax,(  Da2 + 2 ) 2  
B = 2 (  - - (  1 + Da2) 

a x , -  1 ( a x , -  1)2 

c = (-+ D u ~  + 2 L)1 
a x ,  - 1 

In the present instance, the parameter p defining the stability of the plane waves 
is used along with the condition describing the occurrence of type I instability prior 
to type I1 instability, yoc<y&,  and the results are plotted in the form of y against xo 
in figures ( 2 a )  and ( 2 6 ) .  The conditions p < 0 or p > 0 and F (  y )  > 0 and F (  y )  < 0 are 
marked along the curves. 

We note that for a given set of parameter values such as Da,, Da2,  D,, D2 and a 
etc, ( 1 0 )  and ( 1 4 )  give rise to multiple values for yo, and yb, and therefore various 
different possibilities by satisfying the requirement of yo < y;,. Two such possibilities 
are presented as figures ( 2 a )  and ( 2 6 ) .  In both situations the conditions p (0  for 
stability and F (  y )  > 0 can be realized. The region F( y )  > 0 suggests that the onset of 
spatially uniform oscillations precede the spatially non-uniform ones. Furthermore if 
p < 0 then these oscillations are unstable. The exponentially autocatalyzed reaction- 
diffusion system thus shows the multiple existence of an instability condition of uniform 
oscillations due to diffusion. 
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Figure 2b. Region in parameter space for uniform oscillations to become unstable due to 
diffusion. 

To sum up, this letter derives the Ginzburg-Landau equation for the exponentially 
autocatalyzed reaction-diffusion system, and describes the behaviour of a system near 
the Hopf bifurcation analytically. The conditions derived explain in general the manner 
in which a phase transition in a reaction-diffusion system can occur. 
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